Endogenous Galectin-1 in a Murine Model of Paw Edema: Emerging Notion of a Galectin-9 Pro-resolving Effect

Asif Iqbal1, André Sampaio1, Francesco Maione1, Karin Greco1, Toshiro Niki2, Mitsuomi Hirashima3, Dianne Cooper1, Mauro Perretti1

1Biochemical Pharmacology, The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, EC1M 6BQ, London, United Kingdom, 2Research Division, GalPharma Company, Ltd., FROM-Kagawa, 2217-16 Hayashi-cho, Takamatsu, Kagawa, Japan, 3Departments of Immunology and Immunopathology, Faculty of Medicine, Kagawa University, Kagawa, Japan

The anti-inflammatory properties of Galectin-1 (Gal-1) in acute inflammation are well established but the role of endogenous Gal-1 has been poorly investigated. To address this, we performed the self-resolving carrageenan (CG)-induced paw edema model in wild-type (WT) and Gal-1-/- mice.

Upon sub-plantar injection of 1\% CG, Gal-1-/- mice displayed a similar first phase of edema (\leq 24 h) to WT mice, however a much less pronounced second phase (48-96 h) was evident in this genotype. This reduced inflammation was associated with lower paw expression of inflammatory genes (e.g. IL-1\beta) and cell infiltrates in Gal-1-/- mice. Analysis of galectin protein and mRNA expression revealed high expression of Gal-1 in WT paws during resolution (\geq 48h), with some degree of expression of Gal-9. In Gal-1-/- mice, Gal-9 protein expression, mainly in recruited immune cells, was remarkably high. Administration of recombinant Gal-1 to WT mice completely ablated the first phase of edema but was ineffective when administered therapeutically at the 24h time-point. Conversely Gal-9 administration did not alter the first phase of edema but significantly reduced the second phase when administered therapeutically. This suggests both of these proteins have anti-inflammatory actions in this model albeit at different phases of the inflammatory response.

Collectively, these data indicate that the absence of endogenous Gal-1 results in an abrogated response during the second phase of the edema reaction. One possible explanation could be increased levels of Gal-9 in these animals resulting in induction of cell death, alleviation of edema and promotion of resolution.