P2Y₁₂ receptor blockade potentiates the anti-platelet effects of both prostacyclin and nitric oxide

Nicholas S. Kirkby^{1,2}, Rachit Singhal¹, Jane A. Mitchell², Timothy D. Warner¹

¹William Harvey Research Institute, Barts & the London School of Medicine, London EC1M 6BQ, United Kingdom, ²National Heart & Lung Institute, Imperial College, London SW3 6LY, United Kingdom

ADP is an important mediator of secondary platelet aggregation acting via P2Y₁ and P2Y₁₂ receptors. Activation of P2Y₁₂ receptors, the target of thienopyridine anti-thrombotic drugs, inhibits adenylyl cyclase and so promotes aggregation by reducing intraplatelet levels of cAMP. Prostacyclin (PGI₂) increases cAMP, which both directly, and in synergy with NO-stimulated cGMP, suppresses platelet reactivity. As blockade of P2Y₁₂ receptors has been reported to sensitize platelets to the effects of PGI₂ we hypothesised that blockade of P2Y₁₂ would also sensitize platelets to inhibition by NO.

Using light transmission aggregometry we assessed the inhibitory effects of PGI₂ (0.3-100nM) or the NO donor DEA/NONOate (0.1nM-10µM) upon the aggregation of human washed platelets induced by thrombin (0.01-1U/ml) in the presence or absence of the P2Y₁₂ receptor blocker prasugrel active metabolite (PAM; 3µM). In parallel experiments platelet levels of cAMP and cGMP were measured rather than aggregation (n=5 for all).

P2Y₁₂ blockade reduced sensitivity (-logEC₅₀: vehicle, 0.80±0.04; PAM, 0.37±0.05; p=0.0002) but not maximal responses to thrombin (E_{max}: vehicle, 59±2%; PAM, 61±4%; p=0.6). PGI₂ caused concentration-dependent inhibition of aggregation induced by a maximal concentration of thrombin (-logEC₅₀: 8.1±0.1), and this was potentiated by PAM (-logEC₅₀: 9.0±0.1; p<0.0001). PGI₂ increased platelet cAMP content (E_{max}: 5.1±0.4pmol), but less so in the presence of thrombin (E_{max}: 3.0±0.3pmol; p<0.05). In the presence of PAM, the effects of PGI₂ on cAMP were augmented (E_{max}: 7.4±0.8pmol) and the inhibitory effects of thrombin were blocked (E_{max}: 7.6±0.7pmol; p<0.05). DEA/NONOate also inhibited platelet aggregation (-logEC₅₀: 7.0±0.3) and this was enhanced in the presence of PAM (-logEC₅₀: 8.3±0.2; p=0.005). cGMP levels were increased by DEA/NONOate, but were unaffected by thrombin or PAM. (The same pattern of responses was found in matching studies using platelet-rich plasma and measurement of platelet aggregation in 96-well plates).

P2Y₁₂ blockade potentiates the inhibitory effects of PGI₂ on platelet aggregation, probably by preventing agonist-induced inhibition of adenylyl cyclase. The anti-platelet effects of NO are also enhanced by P2Y₁₂ blockade without increase in the levels of cGMP. This may be explained by synergy between cGMP and increased cAMP following from P2Y₁₂ blockade.