PHARMACOLOGICAL EVALUATION OF THE BENZOTHIAZEPINE CGP37157 AND ISOSTERIC ANALOGUES

FJ Martínez-Sanz1, L González-Lafuente1,2, AJ Moreno-Ortega1,2, J Egea1, R León1,2, M Villarroya1, MF Cano-Abad1,2, C de los Ríos1,2

1Instituto Teófilo Hernando de I+D del Medicamento, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain, 2Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006, Madrid, Spain

Benzothiazepine CGP37157 is widely used as tool to explore the role of mitochondria in cell Ca2+ handling by its blocking effect of the mitochondria Na+/Ca2+ exchanger (mNCX)[1] and has recently shown to exhibit neuroprotective properties[2]. In the trend to improve its neuroprotection profile, we have synthesized ITH12505, an isosteric analogue having a methyl instead of chlorine at C2’ of the phenyl ring.

We have also confirmed the blockade of mNCX exerted by CGP37157 and ITH12505 in permeabilized HeLa cells, transfected with mitochondrially-targeted aequorin (AEQ-Mt-Mut), and measuring mitochondrial clearance constant. By causing a mild isosteric replacement in the benzothiazepine CGP37157, we pretended to obtain a new compound, ITH12505, with improved neuroprotective properties.

As far as to prove this hypothesis in neuroprotection experiments we have used two models, SH-SY5Y cells and rat hippocampal slices. While ITH12505 elicited protection in SH-SY5Y cells stressed with oligomycin A/rotenone, CGP37157 was ineffective. In hippocampal slices subjected to oxygen/glucose deprivation plus reoxygenation, ITH12505 offered protection at 3-30 µM, while CGP37157 only protected at 30 µM. ITH12505 exerted similar neuroprotective properties to CGP37157 in hippocampal slices stressed with veratridine. Also, both compounds afforded neuroprotection in hippocampal slices stressed with glutamate.

In conclusion, these findings may inspire the design and synthesis of new benzothiazepines targeting mitochondrial Na+/Ca2+ exchanger and L-type voltage-dependant Ca2+ channels, having antioxidant properties.

ACKNOWLEDGMENT

(1) Fundación CIEN, IS Carlos III, No. PI016/09; (2) MICINN, SAF2010-21795; (3) IS Carlos III, RD 06/0026 RETICS, RENEVAS; (4) Ayuda NDE 07/09, Agencia Lain Entralgo, Comunidad de Madrid; Programa Miguel Servet (CP10/00531, IS Carlos III).

